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Abstract. We discuss the validity of replacing the complicated three-body confinement operator of the Y
string junction type by three kinds of approximation which are numerically much simpler to handle: a
one-body operator with the junction point at the centre of mass, a two-body operator corresponding to
half the perimeter of the triangle formed by the three particles, and the average of both. Two different
approaches for testing the quality of the approximations are proposed: a geometrical treatment based on
the comparison of the potential energy strengths for the various inter-quark distances, and a dynamical
treatment based on the comparison of the corresponding effective string tensions using a hyperspherical
approach. Both procedures give very similar results. It is shown how to simulate the genuine string junction
operator by the approximations proposed above. Exact three-body calculations are presented in order to
compare quantitatively the various approximations and to confirm our analysis.

1 The Y string potential
and possible approximations

The QCD lattice calculations support the idea that the
confining potential energy in a three quark system can be,
at best, simulated by the so-called Y-shape potential [1].
In this scheme, the three point-like quarks (located at the
apices of a triangle ABC), are connected by three flux
tubes starting from a junction point (I) in such a manner
that it minimises the sum of the distances to the three
quark positions. Note that effective QCD theories support
also this idea [2].

If the angle corresponding to an apex is greater than
120◦, the junction point is precisely at this apex, whereas
if all the angles are less than 120◦, then the equilibrium
junction position coincides with the so-called Toricelli (or
Fermat or Steiner) point; it corresponds to a point for
which the corresponding angles ÂIB, B̂IC, and ÂIC are
all equal to 120◦.

Thus the genuine string potential in a baryon is de-
fined by

VY = σ(AB + AC) if Â > 120◦
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VY = σ(IA + IB + IC) if Â, B̂, Ĉ ≤ 120◦, (1)

where σ is the string tension, in principle a constant of
the theory. This expression has been used in several works
(see for instance [3–6]). The success of simple quark mod-
els using a potential to simulate the confinement without
gluonic modes can be justified by the fact that the low-
est gluonic excitation energy in the three quark system is
found to be about 1 GeV in the hadronic scale [10].

Efficient methods to deal with Y-shape interaction rely
either on Monte-Carlo algorithms (see for instance [7, 8])
or hyperspherical methods (see for instance [9]). However
it is very difficult to implement in a numerical code, es-
sentially for two reasons:
(i) it is a three-body operator which makes the equations
very complicated;
(ii) the presence of two different expressions depending
upon the configuration makes the integration domain not
evident to handle. This complexity explains why, for prac-
tical calculations, the genuine Y-shape potential is often
replaced by other expressions that are considered as ap-
proximants.

The most popular one is to consider half the perimeter
of the triangle formed by the three quark coordinates and
to define the confining potential as

VC =
σ

2
(AB + BC + CA), (2)

which is also called the ∆-shape potential. However it is
shown in [1] that the three quark potential energy is better
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represented by the Y-shape interaction than by the ∆-
shape one. Nevertheless, the potential (2) is a two-body
operator, free from the complication due to angles; hence
it is much simpler and it is still widely used in practice
(see for instance [11–13]).

A λi · λj colour dependence associated with a two-
body linear confinement does produce such a 1/2 factor.
Although this colour prescription is perfectly relevant in
the case of one-gluon exchange, there is no theoretical
justification to apply it for the confinement potential.
This 1/2 factor is close to the value 0.53, predicted by
lattice calculation [1], if one tries to replace the Y-shape
by a ∆-shape.

It is very important to stress that both the genuine
string potential (1) and the two-body confining poten-
tial (2) are of geometrical essence, depending only
on the position of the quarks and being independent of
their masses.

Another approximation that was suggested is to replace
the true junction point I by the centre of mass G of the
three quark system [14,15]. In this case the corresponding
confining operator is simply

VG = σ(GA + GB + GC). (3)

This approximation is particularly interesting since this
potential is a one-body operator free from angle compli-
cations; hence its numerical treatment is quite easy. In
contrast to the previous expressions, this approximation
does depend on the system via the centre of mass coordi-
nate.

In this paper, assuming that VY represents the true
physics, we want to study the quality of the approxima-
tions (2) and (3) and their relevance. To this end, we pro-
pose two approaches: a geometrical one and a dynamical
one relying on the hypercentral formalism. With this lat-
ter technique, it is possible to obtain directly an average
value of the confining potential energy depending only on
one length parameter. Then we check their validity with
an exact three-body treatment based on a complete hy-
perspherical treatment (beyond the hypercentral approx-
imation). A simulation of three-body potential by sums
of two-body potentials was performed in [16], but with a
philosophy very different from the one developed here.

In the next section, the geometrical approach is pre-
sented. In Sect. 3, the hyperspherical formalism is used to
calculate the value of the effective string tension for a given
system. Section 4 is devoted to a three-body treatment of
the confining potential and the simulation of the genuine
string operator. Conclusions are drawn in the last section.

2 Geometrical approach

2.1 Configuration of the system

We are interested in the ratio of the potential energy for
two forms of confining interactions as function of the con-
figuration of the system. Since this ratio is scale indepen-
dent and since the dynamical constant σ disappears in

this ratio, it is always possible to rescale the quark trian-
gle putting AB = 1 and to deal only with the remaining
apex of the triangle. Denoting by L the minimal distance
from the junction point I, by D the distance from the
centre of mass G, and by P half the perimeter of the tri-
angle, we will study the ratios RY/C = VY /VC = L/P ,
RG/C = VG/VC = D/P , RG/Y = VG/VY = D/L.

In order to obtain analytical expressions (already com-
plicated!) for these ratios we restrict ourselves to a system
with 2 identical quarks of mass m located in A and B and
a third one of mass M = xm located in C. The region
0 < x < 1 corresponds to QQq systems with a light and
two heavy quarks; the region x > 1 corresponds to qqQ
systems with a heavy and two light quarks. The case x = 1
corresponds to systems qqq with three identical masses.

Since AB is fixed, the only freedom for the geometry of
the system is the position of the apex C, that can be defined
by two angles a = Â and b = B̂. Following the previous
remarks, one must calculate L(a, b), P (a, b), D(a, b, x). In
fact this study is still too complicated. One can simplify it
a lot noting that there is a symmetry versus the mediating
line of AB, with the consequence that R(a, b) = R(b, a).
This implies that an extremum of those ratios, the only im-
portant thing for our consideration, always lies in the medi-
ating line and it is sufficient to restrict the study to isosce-
les triangles. Thus, we only compute RY/C(a), RG/C(a, x)
and RG/Y (a, x).

In a quantum mechanical treatment of the confinement,
the wave function of course explores all the configurations
for the triangle so that, maybe, the most important physi-
cal quantity to be computed is the average of the previous
ratios. One defines

R(x) =
2
π

∫ π/2

0
R(a, x) da. (4)

2.2 Various distances

The calculation of the various distances results from geo-
metrical properties in a triangle and presents no difficulty.
It is easy to show the following.
(1) The genuine string distance is given by

L(a) =
1

cos(a)
if 0 ≤ a ≤ π/6, (5a)

L(a) =
1
2
(tan(a) +

√
3) if π/6 < a < π/2. (5b)

(2) Half the perimeter is equal to

P (a) =
1 + cos(a)
2 cos(a)

. (6)

(3) The centre of mass string distance is given by

D(a, x) =
tan(a) +

√
x2 tan2(a) + (2 + x)2

2 + x
. (7)
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2.3 Genuine potential to half perimeter

With the expressions (5) and (6), one has RY/C(a) =
L(a)/P (a). This ratio is always larger than 1, meaning that
the genuine string junction potential is always more repul-
sive than the sum of the two-body confining potentials.
However, the ratio is 1 for a flat triangle or for an infinitely
stretched triangle and presents a maximum, 2/

√
3 ≈ 1.155,

for an equilateral triangle. This is in agreement with the
result of [1].

The average value (4) in this case is equal to

RY/C =
2√
3

+
2
π

[
1 −

√
3 + 2 ln

(
1 +

√
3

2

)]
≈ 1.086.

(8)
The value 1/2 RY/C ≈ 0.54 must be compared with the
corresponding value 0.53 derived from QCD [1]. Thus the
average error replacing the string tension operator by the
sum of the two-body confining potentials is of the order of
8%; this approximation can be considered as a good one.

2.4 Centre of mass junction approximation
to half perimeter

There does not exist special angle conditions in this case
and, following the formulas (7) and (6), the ratio is given
by RG/C(a, x) = D(a, x)/P (a).

The maximum value is obtained for an infinitely
stretched triangle and for an infinite mass asymmetry. In
this special case, the ratio equals 2, but in the physical
part of the domain, this ratio is much closer to unity. A
more reliable estimation results from averaging following
the procedure (4). The integral is cumbersome but can be
evaluated analytically using for example the Mathemat-
ica package:

RG/C(x) =
4

π(2 + x)

×
{

ln(2) + x + 2
√

1 + x arctan
(
2
√

(1 + x)/x
)

−(2 + x) E(X) + x2 K(X)/(2 + x)
}

, (9a)

where

X =
4(1 + x)
(2 + x)2

, (9b)

and where K(X) and E(X) are the complete elliptic inte-
grals respectively of the first and of the second kinds [17].
The function RG/C(x) is presented in Fig. 1. It is always
greater than 1, indicating that the centre of mass string
always overestimates the sum of the two-body confining
potentials. For x = 0 (QQq systems) the value is 1.168, for
x = 1 (qqq systems) it is 1.136, and for x = 20 (qqQ sys-
tems) it is 1.248. Curiously it passes through a minimum,
1.132, for x ≈ 0.600 corresponding to the ssu and ssd sys-
tems. Replacing the two-body potential by the centre of
mass string induces an error of about 15–20%.
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Fig. 1. Ratio RG/C(x) from the geometrical treatment (see
formula (9)) and ratio rG/C(x) = bG(x)/bC(x) from the hyper-
spherical treatment (see formulas (34) and (35)), as a function
of the mass ratio x

2.5 Centre of mass junction approximation
to genuine potential

In a similar way, we define the ratio RG/Y (a, x) =
D(a, x)/L(a). A maximum value of 2 is obtained in the
very extreme situation a → π/2, x → ∞, but, in general,
the values of this ratio are very close to 1.

The integration of the expressions RY/C(a) over the
angle a is very cumbersome; the final result looks like

RG/Y (x) =
4

π(2 + x)
(10a)

×
{

1
12

(
π + 3

√
3 ln(2)

)
+

2 − √
3

4

+
2 + x

2
E(π/6, X) − 1

2

√
1 + x + x2 ln(Y )

+
√

1 + x

(
1
4

ln(T ) +
√

3
2

arctan(U)

)}
,

where X is given by (9b) and the new quantities Y , T ,
and U are equal to

Y =
x(2

√
1 + x + x2 − √

3x)√
3(1 + x) +

√
(1 + x + x2)(3 + 3x + x2)

, (10b)

T =

√
3 + 3x + x2 −√3(1 + x)√
3 + 3x + x2 +

√
3(1 + x)

, (10c)

U =
3
√

1 + x

2x +
√

3 + 3x + x2
. (10d)

The behaviour of this ratio is shown in Fig. 2. Some re-
markable values are 1.075, 1.048, 1.149 for x = 0, 1, 20.
The function RG/Y (x) passes through a minimum 1.043
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Fig. 2. Ratio RG/Y (x) from the geometrical treatment (see
formula (10)) and ratio rG/Y (x) = bG(x)/bY (x) from the hy-
perspherical treatment (see formulas (34) and (41)), as a func-
tion of the mass ratio x

for x ≈ 0.585, corresponding again to the Ξ baryon. It is
very instructive to remark that for a large domain of mass
ratios 0 < x < 5, the error introduced by replacing the
Toricelli point by the centre of mass is less than 10%.

2.6 Another approximation

Replacing the genuine string junction potential by a sum
of the two-body confining potentials is a rather good ap-
proximation in any case. Replacing it by a sum of one-body
centre of mass string potentials is even a better approxima-
tion for equal quark mass systems and one light-two heavy
quark ones. This approximation becomes slightly worse (al-
though not dramatically) for one heavy–two light quark
systems. In most cases, these approximations are better
than 10%.

It is interesting to remark that the genuine string ten-
sion is always comprised between half perimeter and centre
of mass junction. This last property is obvious since the
Toricelli point is precisely the one which minimises the
sum of the distances; in contrast the former property is
by no means obvious. One can take benefit of this remark
and define a new ratio by

RM/Y (x) =
1
2
(
RC/Y + RG/Y (x)

)
. (11)

In (11), the function RG/Y (x) has been computed before.
The value of RC/Y can be computed analytically. The
result is

RC/Y =
1
6π

(
3 +

(
1 +

√
3
)

π

− 3
[
2 ln(2) + ln

(√
3 − 1

)
− 3 ln

(√
3 + 1

)])
≈ 0.923. (12)
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Fig. 3. Ratio RM/Y (x) from the geometrical treatment (see
formula (11)) and ratio rM/Y (x) from the hyperspherical treat-
ment (see formula (42)), as a function of the mass ratio x

The curve RM/Y (x) is plotted in Fig. 3. One can remark
that the values of RM/Y (x) differ from unity by less than
3% for all relevant values of the x parameter. So this pro-
cedure to simulate the genuine string junction potential
seems preferable to the previous discussed ones.

3 Hyperspherical approach

3.1 Hyperspherical coordinates

The hyperspherical formalism is an economical way to
tackle the three-body problem. We refer to specialised pa-
pers for technical aspects (see for instance [9]). Here we
just recall what is needed for our purpose.

Let us define a reference mass m and introduce the
dimensionless quantities ωi = mi/m, ωij = ωi + ωj and
ω = ω1 +ω2 +ω3. The first thing to do is to introduce the
Jacobi coordinates

ρij = αij(ri−rj), λij = βij

(
ωiri + ωjrj

ωij
− rk

)
, (13)

with

αij =
√

ωiωj

ωij
, βij =

√
ωkωij

ω
,

Ω = αijβij =
√

ω1ω2ω3

ω
. (14)

The normalization quantities have been set in order to
obtain nice properties under particle permutations. From
now on, we specialise to the 1–2 pair and drop the 12 index
everywhere, so that the Jacobi coordinates for our prob-
lem are denoted simply ρ (instead of ρ12) and λ (instead
of λ12).
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Each inter-distance rij = ri −rj can be expressed only
in terms of ρ and λ, so that half the perimeter of the quark
triangle is expressed as P (ρ2,λ2,ρ·λ). The same is true for
the positions relative to the centre of mass si = ri −Rcm,
so that the centre of mass string distance is D(ρ2,λ2,ρ·λ).
Finally, the same property is valid for the genuine string
distance L(ρ2,λ2,ρ · λ). Over the six original variables
defining the configuration, three have disappeared corre-
sponding to the three Euler angles giving the orientation
of the plane of the quarks in a fixed reference frame. The
confining potential is expressed in terms of two distances ρ

and λ, and one angle χ = (ρ̂, λ̂) between ρ and λ. Instead
of ρ and λ, the hyperspherical formalism introduces the
hyperradius R and the hyperangle θ through a polar trans-
formation

ρ = R sin θ, λ = R cos θ with 0 ≤ θ ≤ π/2. (15)

The hyperradius is invariant under quark permutations

R =
√

ρ2 + λ2 =
√

ρ2
23 + λ2

23 =
√

ρ2
31 + λ2

31. (16)

The elementary volume element with the hyperspherical
coordinates is simply

dV = R5dRdΩ(6),

dΩ(6) = cos2 θ sin2 θ dθ sin χ dχ dΩ(3), (17)

where dΩ(6) is the volume element on the hyperangles
and dΩ(3) the usual volume element on Euler angles. One
has obviously∫

dΩ(3) = 8π2,

∫
dΩ(6) = π3. (18)

An important property of the hyperspherical formalism
is that a dominant part of the interaction comes from the
hypercentral approximation of the potential V (ρ,λ) which
is the average of the potential over the hyperangles

V (R) =
1
π3

∫
V (ρ,λ) dΩ(6). (19)

For potentials invariant under rotations, as the confining
term we are interesting in, the expression does not depend
on the Euler angles so that, in practice, the hypercentral
potential is simply

V (R) =
8
π

∫ π/2

0
cos2 θ sin2 θdθ

∫ π

0
V (R, θ, χ) sin χdχ .

(20)
In the hypercentral approximation the complicated three-
body problem reduces to a differential equation including
V (R). Within this approximation, we obtain directly an
average value of the potential confining energy depending
only on the hyperradius. Such a treatment is feasible for
the Y-shape as well as its approximants.

In this paper, we focus only on the genuine confining
potential VY and its two approximations VC and VG. In

terms of the hyperradius R and hyperangles θ and χ, they
are defined by

VY (R, θ, χ) = σL(R, θ, χ), (21a)

VC(R, θ, χ) = σP (R, θ, χ), (21b)

VG(R, θ, χ) = σD(R, θ, χ). (21c)

The hypercentral approximations of formulas (21) result-
ing from (20) are denoted here VY (R), VC(R) and VG(R).

The expressions for P and D are easy to obtain. For
the moment, let us quote the following formulas:

D(R, θ, χ) =
∑
i<j

βij

ωk
λij (22)

and
P (R, θ, χ) =

1
2

∑
i<j

ρij

αij
. (23)

The expression for L is much more cumbersome. As was
mentioned above, there are three special cases for which
the angles Θi = (r̂ij , r̂ik) are greater than 120◦ (−1 <
cos Θi < −1/2); in this case L = rij + rik. The “normal
case” (all Θi less than 120◦) is L = rI1 + rI2 + rI3 and is
less easily obtained. Let us quote the final expression.
(1) First region:

−1 <
Ω
ω1

tan θ + cos χ√
Ω2

ω2
1

tan2 θ + 2 Ω
ω1

tan θ cos χ + 1
< −1

2
, (24)

L1(R, θ, χ) (25)

= R cos θ

 tan θ

α
+

1
β

√
Ω2

ω2
1

tan2 θ + 2
Ω

ω1
tan θ cos χ + 1

 .

(2) Second region:

−1 <
Ω
ω2

tan θ − cos χ√
Ω2

ω2
2

tan2 θ − 2 Ω
ω2

tan θ cos χ + 1
< −1

2
, (26)

L2(R, θ, χ) (27)

= R cos θ

 tan θ

α
+

1
β

√
Ω2

ω2
2

tan2 θ − 2
Ω

ω2
tan θ cos χ + 1

 .

(3) Third region:

−1 <

1 + Ω
(

1
ω1

− 1
ω2

)
tan θ cos χ − Ω2

ω1ω2
tan2 θ√

1 + 2 Ω
ω1

tan θ cos χ + Ω2

ω2
1

tan2 θ

√
1 − 2 Ω

ω2
tan θ cos χ + Ω2

ω2
2

tan2 θ

< −1
2
, (28)

L3(R, θ, χ) =
R cos θ

β

√1 + 2
Ω

ω1
tan θ cos χ +

Ω2

ω2
1

tan2 θ
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+

√
1 − 2

Ω

ω2
tan θ cos χ +

Ω2

ω2
2

tan2 θ

 . (29)

(4) Fourth region or “normal region”:

−1/2 < cos Θi < 1 ∀ i, (30)

L4(R, θ, χ) = R cos θ

×
{

ω3
1 − ω3

2

ω1ω2(ω2
1 − ω2

2)
tan2 θ (31)

+
[
ω2 − ω1

ω12
cos χ +

√
3 sin χ

]
tan θ

Ω
+

1
β2

}1/2

.

Since each distance is proportional to the hyperradius, all
the confining potentials under consideration have the form
(I = C, G, Y )

VI(R) = bI(ω1, ω2, ω3)R. (32)

One sees that in the hyperspherical formalism the con-
fining potential remains linear, with a string tension which
is no longer σ but a modified value b which depends on the
system. This dependence is not of a geometrical nature, as
in the previous section for VG, but of a dynamical charac-
ter that comes from the choice of the Jacobi coordinates.
The main effort of this section is devoted to the calculation
of this new “string” tension b.

To stick to the previous section and also to get ana-
lytical results, we restrict ourselves from now on to the
case of two identical particles (particles 1 and 2 with the
reference mass m = m1 = m2 and a particle 3 with mass
m3 = xm). In this special case, the coefficients α and β
in (14) are

α =
1√
2
, β =

√
2x

2 + x
, Ω = αβ =

√
x

2 + x
. (33)

Let us study separately each approximation.

3.2 Centre of mass junction

Among the three contributions to the potential (22), one is
particularly simple. It corresponds to s3 = (βR cos θ)/ω3.
The averaging is trivial and gives the value 32βR/(15πω3).
The calculation of s1 is longer but presents no special dif-
ficulty. A trick to get the answer is to remark that R is
an invariant under quark permutations. Consequently, the
averaging can be performed with the hyperspherical an-
gles θ23 and χ23 as well, so that the result follows im-
mediately from the previous one giving the contribution
32β23R/(15πω1). Similarly the contribution due to s2 is
32β31R/(15πω2). Replacing the quantities βij , ωk by their
values (33) gives the final result for the effective string
tension in this approximation,

bG(x) =
32
15π

σ

[√
2

x(2 + x)
+ 2

√
1 + x

2 + x

]
. (34)

3.3 Half the perimeter

The procedure is essentially the same using now the po-
tential (23). The contribution due to r12 = ρ/α is very
easy to obtain; the result is 32R/(15πα). Switching to
the permuted hyperangles immediately gives the contri-
butions due to r23 and r31, namely 32R/(15πα23) and
32R/(15πα31) respectively. Replacing the quantities αij

by their values (33) gives the final result for the effective
string tension in this approximation

bC(x) =
32
15π

σ

[
1√
2

+

√
1 + x

x

]
. (35)

3.4 Genuine string junction

Because of the special cases, several zones of the plane
(θ, χ) must be isolated corresponding to the conditions
( (24), (26) and (28)), where the integrand has a special
form ( (25), (27) and (29)). These various zones are sepa-
rated from the “normal zone” by a line which corresponds
to the limit cos Θi = −1/2. It is convenient to take θ as
abscissa and χ as ordinate in the plane.

The condition (24) is explicitly written

χ1(θ) = arccos

[
−3Ω tan θ −

√
4 − 3Ω2 tan2 θ

4

]
. (36)

This curve starts with the value 2π/3 for θ = 0 and ends
up at π for θ = θ0 = arctan (1/Ω). In the first region,
above χ1, the expression L = L1 (25) applies.

The condition (26) explicitly reads

χ2(θ) = arccos

[
3Ω tan θ +

√
4 − 3Ω2 tan2 θ

4

]
= π−χ1(θ).

(37)
This curve starts with the value π/3 for θ = 0 and ends
up at 0 for θ = θ0. In the second region, below χ2, the
expression L = L2 (27) applies.

Finally a third region is found from condition (28),
which explicitly reads in terms of two functions

χ−
3 (θ) = arccos

[√
(3Ω2 tan2 θ − 1)(3 − Ω2 tan2 θ)

2Ω tan θ

]
,

χ+
3 (θ) = π − χ−

3 (θ). (38)

These curves start with the values 0 and π for θ = θ0 and
join at the common value π/2 for θ = θ1 = arctan(

√
3/Ω).

In the third region, at the right of χ3, the expression L =
L3 (29) applies.

In the rest of the plane, the “normal” expression L4 (31)
is valid. The situation is summarised in Fig. 4.

To obtain bY (x) we integrate the function L(R, θ, χ) in
the plane θ, χ. The result is given as the sum of seven con-
tributions:

I =
1
π3

∫
L(R, θ, χ) dΩ(6)
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Fig. 4. Integration domain of
quantity L(R, θ, χ) as a function
of angles θ and χ (see Sect. 3.1)

=
8αR

π
(I1 + I2 + I3 + I4 + I5 + I6 + I7) . (39)

We were not able to obtain an analytical formula for I.
The best that we can do is to transform the double integral
into a single integral noting that the integrals over χ can
be calculated analytically. Instead of integration over θ,
it is much simpler to perform the change of variable Z =
Ω tan θ. With these options, one has explicitly

I1 = Ω3
∫ 1

0

Z2 dZ

(Z2 + Ω2)7/2 (40a)

×
∫ χ2(Z)

0

[
2Z +

√
1 + Z2 − 2Z cos χ

]
sin χ dχ,

I2 = Ω3
∫ 1

0

Z2 dZ

(Z2 + Ω2)7/2 (40b)

×
∫ χ1(Z)

χ2(Z)

[√
1 + 3Z2 + 2

√
3Z sin χ

]
sin χ dχ,

I3 = Ω3
∫ 1

0

Z2 dZ

(Z2 + Ω2)7/2 (40c)

×
∫ π

χ1(Z)

[
2Z +

√
1 + Z2 + 2Z cos χ

]
sin χ dχ,

I4 = Ω3
∫ √

3

1

Z2 dZ

(Z2 + Ω2)7/2 (40d)

×
∫ χ−

3 (Z)

0

[√
1 + Z2 + 2Z cos χ

+
√

1 + Z2 − 2Z cos χ
]
sin χ dχ,

I5 = Ω3
∫ √

3

1

Z2 dZ

(Z2 + Ω2)7/2 (40e)

×
∫ χ+

3 (Z)

χ−
3 (Z)

[√
1 + 3Z2 + 2

√
3Z sin χ

]
sin χ dχ,

I6 = Ω3
∫ √

3

1

Z2 dZ

(Z2 + Ω2)7/2 (40f)

×
∫ π

χ+
3 (Z)

[√
1 + Z2 + 2Z cos χ

+
√

1 + Z2 − 2Z cos χ
]
sin χ dχ,

I7 = Ω3
∫ ∞

√
3

Z2 dZ

(Z2 + Ω2)7/2 (40g)

×
∫ π

0

[√
1 + Z2 + 2Z cos χ

+
√

1 + Z2 − 2Z cos χ
]
sin χ dχ.

Due to the symmetries of the problem, it is easy to show
that I1 = I3 and I4 = I6. The integrals I1, I4, I7 can be
calculated analytically, but not I2 and I5.

The calculation is not trivial, but some help is provided
by the Mathematica package. One obtains

bY (x) =
32σ

15π
√

2

{
28 + 39Ω2 + 18Ω4

4 (4 + 3Ω2)2

+ 120 + 368Ω2+ 612Ω4+ 641Ω6+ 377Ω8+ 105Ω10+ 9Ω12

2Ω (4 + 3Ω2)2 (3 + Ω2)2 (1 + Ω2)3/2

+
5Ω3

4
√

3

∫ 1

0

dZ Z
(
1 +

√
3Z
)

(Z2 + Ω2)7/2

×
[(

1 + 3Z2)E
(π

4
− χ2

2
, u
)

−
(
1 −

√
3Z
)2

F
(π

4
− χ2

2
, u
)]

+
5Ω3

4
√

3

∫ √
3

1

dZ Z
(
1 +

√
3Z
)

(Z2 + Ω2)7/2

×
[(

1 + 3Z2)E

(
π
4

− χ−
3

2
, u

)

−
(
1 −

√
3Z
)2

F

(
π
4

− χ−
3

2
, u

)]}
, (41a)

with

Ω(x) =
√

x

2 + x
, u(Z) =

4
√

3Z(
1 +

√
3Z
)2 ,

χ2(Z) = arccos

[
3Z +

√
4 − 3Z2

4

]
,

χ−
3 (Z) = arcsin

[√
3
(
Z2 − 1

)
2Z

]
, (41b)
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and F (φ, m) and E(φ, m) are respectively the elliptic in-
tegrals of the first and second kinds [17].

3.5 Comparison of the effective string tensions

It is interesting to compare the string tensions bG(x) (34),
bC(x) (35), bY (x) (41) for the three expressions of the
confining operator. Contrary to the previous geometrical
approach they all depend on the system; as in the pre-
ceding section we introduce the ratios of the string ten-
sions rY/C(x) = bY (x)/bC(x), rG/C(x) = bG(x)/bC(x),
rG/Y (x) = bG(x)/bY (x).

3.5.1 Genuine to perimeter

The ratio rY/C(x) is presented in Fig. 5. It is always greater
than 1, indicating that the genuine tension is more repul-
sive than the two-body approximation. It starts from 1 for
x = 0, increases to a maximum 1.099 for x ≈ 1 and then
decreases slowly around 1.085 for large values of x. Those
values are very close to the constant value 1.086 obtained
in the geometrical approach.

3.5.2 Centre of mass to perimeter

The ratio rG/C(x) is plotted in Fig. 1. It starts from 1
for x = 0, increases rapidly up to 1.15 for x ≈ 0.5 and
then presents a plateau at this value around x ≈ 1; it
tends asymptotically to 2

√
2/(1 +

√
2) ≈ 1.1715 for an

infinite value of x. Although the forms of the curves for the
hyperspherical formalism and the geometrical approach
are not identical, the values for the corresponding ratios
are rather close.

x

0 2 4 6 8 10 12 14 16 18 20
1.02

1.04

1.06

1.08

1.10

1.12

RY/C

rY/C

Fig. 5. Ratio RY/C ≈ 1.086 from the geometrical treatment
(see formula (8)) and ratio rY/C(x) = bY (x)/bC(x) from the
hyperspherical treatment (see formulas (41) and (35)), as a
function of the mass ratio x

3.5.3 Centre of mass to genuine

The ratio rG/Y (x) is shown in Fig. 2. It starts from 1 for
x = 0, rises to the local maximum of 1.0556 for x ≈ 0.195,
then passes through the local minimum of 1.051 for x ≈ 1
and rises very slowly to 1.08 for large values of x. Here
again the values are in nice agreement with the geometrical
approach, and are even closer to the genuine case.

3.5.4 Another approximation

In the hyperspherical formalism, we find the same fea-
tures concerning the approximations as in the geometrical
approach: for a given value of the string constant σ, the
centre of mass junction potential is more repulsive than
the potential with the genuine junction which is in turn
more repulsive than half the perimeter potential. These
two approximations can be considered as quite reasonable,
differing by no more than 10% as compared to the genuine
string junction one.

As in the case of the geometrical approach, one may
notice that bY (x) is always comprised between bC(x) and
bG(x). Thus it is tempting to define a new approximation
bM (x) and a new ratio rM/Y (x) similar to that of (11) by

rM/Y (x) =
bM (x)
bY (x)

=
(bC(x) + bG(x))/2

bY (x)

=
1
2
(
rC/Y (x) + rG/Y (x)

)
. (42)

The curve rM/Y (x) is plotted in Fig. 3. One can remark
from this figure that rM/Y (x) differs from unity by less
than 2% for all values of the parameter x. Like in the
geometrical case, using this prescription to simulate the
genuine string junction potential seems more preferable
than the ones discussed previously.

4 Three-body calculations

4.1 Strategy

For a system composed of two identical particles of mass
m and a third particle of mass M = xm, the three-body
equation in the hypercentral approximation to the hyper-
spherical formalism is very simple; it looks like

[K(x, R) + b(x)R]Ψ(R) = EΨ(R). (43)

In this expression E is the energy eigenvalue, and K(x, R)
symbolises the differential operator corresponding to the
kinetic energy plus all the hypercentral potentials except
the confining hypercentral interaction which is explicitly
written as b(x)R, as it was proved in the preceding sec-
tion. Up to now, we considered three types of confining
potentials VI , labelled by an index I (I = Y for the gen-
uine three-body confinement, I = C for the two-body half
perimeter confinement and I = G for the one-body centre
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of mass junction). The important point is that, for these
three possibilities, the operator K(x, R) is the same. For a
given string tension σ, the only difference lies in a different
value of the constant b(x) appearing in (43). For a gen-
uine string tension, we have the value b(x) = bY (x) given
by (41), while for centre of mass junction and half perime-
ter confinement one must employ the bG(x) and bC(x) of
formulas (34) and (35) respectively. The numerical results
of the various possibilities are of course different although
they should be close, within less than 10%. This property
was the conclusion of our two previous sections.

In the light of the behaviour of the curves RM/Y (x)
and rM/Y (x), it is natural to try to simulate the potential
VY by defining a new confining potential

VM =
1
2

(VC + VG) , (44)

with VC and VG given respectively by formulas (2) and (3).
Let us emphasise that the unique above definition agrees
with both the geometrical approach for the ratio RM/Y =
VM/VY and the hyperspherical approach using bM (x).

As the ratios RM/Y (x) and rM/Y (x) are very close to
1, one can hope that the VM and the VY will give similar
spectra with the same string tension. The situation is not
so favourable for potentials VC and VG since the corre-
sponding ratios R and r may differ from 1 by more than
10%. Nevertheless, we can try to simulate results obtained
from the Y-shape potential by using a renormalised value
of the string tension in potentials VC and VG.

Indeed, let us suppose that we perform an hyperspher-
ical calculation for the I approximation with a string con-
stant σI . Now let us perform an hyperspherical calculation
for the J approximation, not with an identical string con-
stant σJ = σI , but with a string constant modified in the
following way:

σJ(x) = σI rI/J(x) (σJ(x) = σI bI(x)/bJ(x)) .

Obviously, one recovers the original equation and thus the
original results. In other words, one can simulate the results
of a treatment based on the approximation I, by perform-
ing a treatment based on the approximation J , provided
we change the string constant in a consistent way. This
conclusion is perfectly exact for the hypercentral approx-
imation. This does not mean that it must remain exact
if we perform a more sophisticated three-body treatment.
The quality of this simulation, as well as the results coming
from VM , are the subjects of this section.

Our numerical algorithm to solve the three-body prob-
lem with potentials VC , VG and VM is based on an expan-
sion of the wave function in terms of harmonic oscillator
functions with different sizes [18]. It was checked with other
methods and was proved to give results of good accuracy
if the expansion is pushed sufficiently far (let say up to
16–20 quanta). Moreover, it can deal easily with a rela-
tivistic kinetic energy operator. The details of technical
aspects are not the subject of this paper and can be found
elsewhere [19]. For the present purposes, it is enough to
say that we are able to solve in a very fast and precise way

a three-body calculation either with a non-relativistic or
relativistic expression for the kinetic energy operator.

One-body and two-body operators are easy to imple-
ment, but three-body operators are much more compli-
cated to handle, specially if one must distinguish several
integration domains, as it is the case for the Y-shape poten-
tial. In this paper, the three-body problem with potentials
VY is solved by the hyperspherical method without the
limitation of the hypercentral approximation [9]. At the
present stage, only S-wave states can be computed with a
good accuracy. This is why the simulation of a three-body
operator either with a two-body, a one-body operator, or
a mixing of both is important.

We consider a system composed of three quarks of type
n (for u or d), s, c, b. In this paper, we are only interested
in the possibility to simulate the genuine confinement by
simpler potentials and, for that purpose, it is enough to re-
strict the interaction to the confining term only. Forgetting
about Coulomb, hyperfine and constant potentials, our re-
sults cannot be compared to physical systems. But the
comparison of the various simulations between themselves
is very instructive. Just to have some connections with real
systems, we put arbitrarily the masses of the quarks at the
physical values (in GeV) [11]: mn = 0.330, ms = 0.550,
mc = 1.850, mb = 5.200. The only potential taken into
account is the linear confining potential as defined in the
first section. To see the sensitivity of the results versus
the kinematics, we perform two types of calculation: one
based on a non-relativistic expression (Schrödinger equa-
tion), and one based on a relativistic expression (spinless
Salpeter equation). To test also the sensitivity to excited
states, we performed the calculations not only for ground
states (L = 0 and N = 1), but also for the first radial
excited state (L = 0 and N = 2), and when it is possible
the first orbital excited state (L = 1 and N = 1).

4.2 Comparison centre of mass to perimeter

This section does not deal with the Y-shape potential, but
nevertheless it is important because we compare here two
treatments that we are able to handle easily, in any physical
situation, and with a good accuracy. The possibility to
simulate one treatment by the other is very instructive
and can be tested carefully, so that firm conclusions can
be drawn.

For a number of systems, exploring a large domain
of the x parameter, we calculate first the baryon binding
energies obtained with the centre of mass junction (G ap-
proximation) and with the half perimeter confinement (C
approximation) using the same value of the string tension
σ = 0.2 GeV2. This value is close to the accepted value
coming from lattice calculations [1]. Then we keep this
value of σ, do the calculations for the G approximation us-
ing a modified value of the string tension based on the argu-
ments of the geometrical approach σR(x) = σ RC/G(x) and
on the arguments of the hyperspherical approach σr(x)=
σ rC/G(x) and compare with the C calculation with the
string tension at the value σ. We also perform the recip-
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Table 1. Simulation of interaction VC by interaction VG, and vice versa, for non-relativistic kinematics. Binding
energy in GeV of various baryons as a function of the total orbital angular momentum L, the total angular
momentum and parity JP , the principal quantum number N , the type of confinement potential (Conf.), and
the value of the string junction σ in GeV2. The total spin is equal to J and the total isospin is the lowest one.
The mass ratio x is also given for each system. Data columns are numbered to make the discussion easier

System L JP N Conf. VC VG VG VG VC VC

σ 0.2 0.2rC/G 0.2/RG/C 0.2 0.2 rG/C 0.2 RG/C

(1) (2) (3) (4) (5) (6)
nnn 0 1/2+ 1 1.912 1.912 1.933 2.104 2.104 2.081
(x = 1) 2 2.633 2.633 2.662 2.898 2.898 2.867

1 1/2− 1 2.332 2.332 2.358 2.567 2.567 2.539
bbb 0 3/2+ 1 0.763 0.763 0.771 0.839 0.839 0.830
(x = 1) 2 1.050 1.050 1.062 1.156 1.156 1.143

1 1/2− 1 0.930 0.930 0.940 1.024 1.024 1.013
snn 0 1/2+ 1 1.819 1.821 1.827 2.004 2.002 1.996
(x = 1.667) 2 2.480 2.505 2.513 2.758 2.730 2.721

1 1/2− 1 2.192 2.214 2.221 2.437 2.413 2.405
bnn 0 1/2+ 1 1.652 1.673 1.604 1.854 1.831 1.909
(x = 15.76) 2 2.171 2.300 2.205 2.548 2.405 2.509

1 1/2− 1 1.939 2.037 1.953 2.256 2.149 2.241
nss 0 1/2+ 1 1.719 1.721 1.744 1.894 1.891 1.866
(x = 0.6) 2 2.335 2.359 2.390 2.595 2.569 2.536

1 1/2− 1 2.067 2.086 2.114 2.296 2.275 2.245
nbb 0 1/2+ 1 1.247 1.278 1.246 1.373 1.339 1.374
(x = 0.063) 2 1.514 1.599 1.559 1.718 1.626 1.668

1 1/2− 1 1.397 1.465 1.428 1.574 1.501 1.540

rocal calculations. Our quantitative results are presented
in Table 1 for non-relativistic kinematics.

Note that the definition of the ratio rI/J (see Sect. 3.5)
implies that rJ/I = 1/rI/J . This property is not exact
for the ratio RI/J . However, the value 1/RC/Y ≈ 1.083
(coming from (12)) must be compared with RY/C ≈ 1.086
(see (8)). These values are very close and this gives us
confidence in the use of RJ/I ≈ 1/RI/J for all cases.

If we compare column (1) and column (4) from Table 1,
we can see that, with the same string tension, masses ob-
tained by potentials VC or VG are rather different. The
binding energy can differ by about 200 MeV or more. So it
is relevant to answer the question: “Is it possible to sim-
ulate each potential by the other, simply in adjusting the
value of the string tension?”.

If we look at columns (1) and (2) for systems charac-
terised by x = 1, we can see that all masses are identical
(actually, they differ at the 6th digit, which is at the limit of
the accuracy of our calculation method). It is then possible
to simulate perfectly the potential VC with a string tension
σ by the potential VG with the string tension σ rC/G. This
property, which is exact at the hypercentral approxima-
tion, is also verified for the full calculation for symmetrical
systems. The situation is less favourable for systems with
x �= 1. In these cases, we can remark that the masses of col-
umn (2) are always greater than the masses of column (1).
For snn and nss baryons, the agreement is good, especially

for the ground state. But for very asymmetrical systems
such as bnn and nbb baryons, there can exist greater mass
differences, up to about 100 MeV. Let us remark that, for
the ground state, the agreement is still reasonable (better
than 2%).

If we compare now data from columns (1) and (3),
we can see that, in general, the potential VC is not so
well simulated by the potential VG using RC/G instead of
rC/G. In particular, masses from these two columns are not
identical for systems with x = 1 (since an exact simulation
is impossible with the geometrical approach, we consider
that using 1/RC/G instead of RG/C in column (6) do not
spoil our conclusions). In most cases, masses of columns
(3) are greater than masses of column (2). But for very
asymmetrical systems, a peculiar mass in column (3) can
be closer to the one in column (1) than the corresponding
mass in column (2).

We retrieve the same features in comparing data from
columns (4) with data from columns (5) and (6). But
one can remark that the masses of column (5) are always
smaller than the masses of column (4), when they are not
identical. Moreover the masses of column (6) are gener-
ally smaller than those of column (5). This situation is the
opposite of the one for columns (1), (2) and (3)

Some calculations have also been performed with rela-
tivistic kinematics, but the same conclusions can be drawn.
We have just remarked that the agreement between the
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Table 2. Comparison between genuine potential VY with a constant string tension σ, the confining potential
VM with the same string tension, and the VC and VG confining interactions with renormalised string tension
(see text). Binding energies are obtained for non-relativistic kinematics. Same kind of data as in Table 1

System L JP N Conf. VY VM VC VG VC VG

σ 0.2 0.2 0.2 rY/C 0.2 rY/G 0.2 RY/C 0.2/RG/Y

(1) (2) (3) (4) (5) (6)
nnn 0 1/2+ 1 2.032 2.009 2.036 2.036 2.020 2.040
(x = 1) 2 2.785 2.768 2.804 2.804 2.782 2.810

1 1/2− 1 2.451 2.483 2.483 2.464 2.488
bbb 0 3/2+ 1 0.810 0.801 0.812 0.812 0.806 0.814
(x = 1) 2 1.111 1.104 1.118 1.118 1.110 1.121

1 1/2− 1 0.978 0.990 0.990 0.983 0.993
snn 0 1/2+ 1 1.933 1.913 1.935 1.937 1.921 1.928
(x = 1.667) 2 2.626 2.625 2.639 2.666 2.620 2.653

1 1/2− 1 2.317 2.332 2.356 2.316 2.345
bnn 0 1/2+ 1 1.752 1.760 1.747 1.769 1.745 1.695
(x = 15.76) 2 2.310 2.390 2.295 2.432 2.293 2.330

1 1/2− 1 2.110 2.050 2.153 2.049 2.063
nss 0 1/2+ 1 1.826 1.807 1.828 1.831 1.815 1.841
(x = 0.6) 2 2.474 2.468 2.484 2.509 2.467 2.523

1 1/2− 1 2.183 2.199 2.219 2.184 2.231
nbb 0 1/2+ 1 1.313 1.312 1.296 1.329 1.317 1.316
(x = 0.063) 2 1.645 1.618 1.574 1.662 1.599 1.647

1 1/2− 1 1.488 1.453 1.523 1.476 1.509

masses is slightly less good than in the non-relativistic
case. To be complete, let us mention that, with this kine-
matics, for systems with x = 1, the differences between
masses computed with VC (VG) and those computed with
VG (VC) and the string tension multiplied by rC/G (rG/C)
appear at the 5th digit, which can be considered as relevant
for the accuracy of our method.

The simulation based on the renormalised string con-
stant originating from the hyperspherical formalism gives
generally good results, better than those coming from
the geometrical approach. Nevertheless, for very asym-
metrical systems, better results can be obtained with this
last method.

It is important to emphasise that using renormalised
string tensions provides, in any case, much better results
(6% in the worst case) than keeping a single value of σ
(17% in the worst case, 10% in the best). This study gives
strong confidence in the use also of a renormalised σ to
simulate the genuine string junction.

4.3 Simulation of the genuine junction

We consider the genuine confining three-body potential
with a constant string tension σ and its various approxi-
mations. Our quantitative results are presented in Table 2
for non-relativistic kinematics.

In this paper, the spectra of the potential VY are ob-
tained by a hyperspherical formalism containing the grand
momenta K = 0, 2, 4. For the moment, only binding en-

ergies of S-wave states have been computed. They are re-
ported in column (1) and are used as a reference to test
the quality of the various approximations. All other values
have been computed with a harmonic oscillator basis up to
20 quanta. The accuracy of all binding energies is better
than 1%.

In column (2), binding energies of the potential VM are
presented. They are obtained with a value for the string
tension which is the same as the one used for VY . One
can see that the numbers of columns (1) and (2) differ
generally by less than 20 MeV, with as the only notable
exception the first excited S-wave state of the bnn system.
We cannot say anything about the P-wave states, but we
can expect that the results from the VM potential are also
close to those of the VY interaction. Thus, it appears that
the potential mixing equally the half perimeter and the
centre of mass junction simulates quite well the genuine
Y-shape interaction.

Let us now discuss the quality of the spectra obtained
with VC and VG and with a renormalised string tension as
explained previously. We performed the calculation with a
two-body confining potential of type C and with a string
constant either σ

(C)
r (x) = σ rY/C(x) (column (3)) or σ

(C)
R =

σ RY/C (column (5)). Then we redo the calculation with a
one-body confining potential of type G and with a string
constant of either σ

(G)
r (x) = σ rY/G(x) (column (4)) or

σ
(G)
R (x) = σ RY/G(x) (column (6)).

By comparing the data from columns (3) and (4) in
Table 2, we can see that the masses for baryons nnn and



396 B. Silvestre-Brac et al.: The baryonic Y-shape confining potential energy and its approximants

bbb are practically the same (differences are at the level of
the 6th digit as described in the previous section) and very
close to the value of column (1). This means that, for this
kind of symmetrical systems, the simulation of the poten-
tial VY by interactions VC and VG, based on the hyper-
spherical formalism, gives very good results. The situation
is less favourable for asymmetrical systems. For snn and
nss baryons, the agreement between columns (3) and (4)
is still good, especially for the ground state. But for very
asymmetrical systems such as bnn and nbb baryons, there
can exist greater mass differences, up to about 100 MeV.
Again, for the ground state, the agreement is still reason-
able. Let us remark that the masses in column (4) are
always greater than the corresponding ones in column (3).
The values of these two columns are in reasonable agree-
ment with the reference results of column (1).

Within the geometrical approach, the results of the two
procedures of simulation are never in perfect agreement,
as we can see by comparing columns (5) and (6), but the
values obtained generally enclose the value of column (1).
Let us note that the differences between a mass in column
(5) and the corresponding one in column (6) are generally
of the same order as the gap between values of columns
(3) and (4).

The renormalization of the string tension as suggested
by the geometrical and the hyperspherical formalisms al-
lows one to compute with potentials VC and VG binding
energies which are close to the ones obtained with the po-
tential VY . It gives in any case much better results than the
ones obtained keeping a fixed value of the string tension.

To be complete, it is worth mentioning that the same
conclusions can be obtained with a relativistic kinematics,
although in this case we cannot compute the reference
energies corresponding to the potential VY .

4.4 Particles with different masses

Up to now, the analysis has been done for at least two
identical particles. General analytical formulas in the case
of three different particles are not available, except bG and
bC in the hyperspherical formalism. In this case, we noted
that the tensions are expressed by

bG =
32
15π

σ
∑
i<j

βij

ωk
, (45)

bC =
32
15π

σ
∑
i<j

1
2αij

. (46)

A first possibility to treat easily the problem of three differ-
ent masses is to use the hypercentral approximation with
bM = (bC + bG)/2, with the above expressions for bC and
bG. This procedure would avoid a double numerical inte-
gration to get bY , whereas allowing results to be obtained
of better than 2%.

Another possibility relies on the VM potential proposed
in the previous section. We have verified that this approx-
imation works well in the case of two or three identical
particles. We can reasonably assume that it will also be
good in the case of three different masses.

5 Conclusion

In this paper, we studied three approximations of the gen-
uine three-body confinement: a two-body potential VC

equal to half perimeter of the triangle formed by the three
particles, a one-body potential VG with the junction point
at the centre of mass, and a mixing of both VM = (VC +
VG)/2. Two approaches were investigated to test the qual-
ity of these approximations: a geometrical one for which
the important quantities are the various distances in the
plane of the particles, and another one based on the hyper-
spherical formalism. Both give very similar and consistent
conclusions. The potential energy VG overestimates the
potential energy of the genuine junction by about 5% in
most cases, and about 10% in extreme asymmetrical situ-
ations. The confining potential energy VC underestimates
the potential energy of the genuine junction by about 8%.
Keeping the same value of the string tension in approxi-
mants can induce a 100 MeV error in the calculated masses,
as compared to the spectra obtained from the Y-shape
confinement. In this respect, the VM interaction simulates
the potential energy of the Y-shape interaction to better
than 2%.

Thus, using VM with the same string tension as the
genuine junction gives very good results at the level of
the spectra. To obtain a similar quality (sometimes a bit
better or a bit worse) for the potentials VC and VG, it
is necessary to renormalise the string tension by a mass
dependent factor that can be analytically computed in
the cases of two and three identical particles. This is very
important to simplify the technical effort.
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